ROMIND tec

Solutii si Tchnologii Moderne

$2 Ө 13$ Oกil

GCHIPAMENTE TRATARE APA TUANUAI DE BACIBG

ECHIPAMENTE PENTRU TRATAREA APEI

Echipamentele de tratare a apei pot fi utilizate în cadrul staţiilor de tratare a apei potabile, a apelor industriale sau uzate, pentru dotarea noilor staţii sau pentru retehnologizarea staţitilor existente.

DUZE (CREPINE) PENTRU STAŢII DE EPURARE CHIMICĂ A APEI INDUSTRIALE

Duzele pentru staţii de epurare chimică a apei industriale sunt componente utilizate pentru reţinerea materialelor filtrante granulare (schimbători de ioni, cuarţ, cărbune activ, antracit, pietriş sau nisip cuarţos) şi împiedicarea trecerii acestora în afara filtrelor.

Duzele pot fi folosite în următoarele fluide de lucru: apă brută, amoniac max. 10\%, formaldehidă max. 10\%, isopropanol, metanol max. 50%, sodă caustică max. 50%, acid clorhidric max. 10\%, acid sulfuric max. 10\%, saramură max. 30%.
Condiţille tehnice de utilizare a duzelor sunt următoarele:
-Presiune maximă de lucru: 10 bar.;

- Diferenţa de presiune maxim admisibilă: 6 bar;
-Temperatura de lucru: max. $80^{\circ} \mathrm{C}$.

Elementele componente ale duzelor sunt realizate prin injecție din polipropilenă.
Montajul duzelor se face pe plăci metalice cauciucate sau necauciucate, plăci de beton, colectoare - distribuitoare (ţevi din material plastic, metalice, etc.).
Etanşarea faţă de suprafaţa de aşezare se poate face cu garnituri flexibile din cauciuc sau garnituri rigide din polipropilenă.
Componenta principală a duzelor este elementul filtrant care are fante cu diverse dimensiuni:

Tip element filltrant	Număr de fante	Dimensiunea nominală a fantelor	Suprafaţa nominală de filtrare $\left(\mathrm{mm}^{2}\right)$	Culoare element filtrant
$24 \times 0,2$	0,2	96	Alb	
$36 \times 0,2$	36	0,2	144	Alb
$36 \times 0,4$	36	0,4	288	Verde
$36 \times 0,45$	36	0,45	324	Roşu
$24 \times 2,0$	24	2,6	912	Alb
$24 \times 2,6$	24	1248	Galben	

Modelele duzelor fabricate de ROMIND nu sunt limitative. Se pot executa la comandă diverse combinaţii de subansamble.

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip R - M20

Duzele tip R suntutilizate în general în următoarele utilaje:

- filtre ionice;
- filtre cu strat compact;
- vase amestecare răşini;
- vase intermediare;
- vase separatoare răşini.

Duzele tip R sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementuluifiltrant.
Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime maximă de 34 mm .

Duza tip R-M20 conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă.

Opțional duzele R pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi/ sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune ($\Delta \mathrm{P}$) în funcţie de debit (Q) şi dimensiunile elementelor filtrante (24 x 0,2 $/ 36 \times 0,2$)

Model duză	Suprafaţă filltrantă mm^{2}	Dimensiune filet tijă	Dimensiune gaurả montaj
R 24x0, 2 - M 20	96	M20	Ø $20 \div$ ¢ 23
R 36x0, 2 - M 20	144	M20	$\varnothing 20 \div \varnothing 23$
R 36x0,4-M20	288	M20	$\varnothing 20 \div \varnothing 23$
R 36x0,45-M20	324	M20	$\varnothing 20 \div \varnothing 23$
R 24x2,0-M20	912	M20	$\varnothing 20 \div \varnothing 23$
R 24x2,6-M20	1248	M20	$\varnothing 20 \div \varnothing 23$

Duză (crepină) tip R - M24

Duzele tip R sunt utilizate în general în următoarele utilaje:

- filtre ionice;
- filtre cu strat compact;
- vase amestecare răşini;
- vase intermediare;
- vase separatoare răşini.

Duzele tip R sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant.
Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime maximă de 34 mm .

Duza tip R-M24 conţine următoarele componente:
1.Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă.

Opţional duzele R pot fi prevăzute cu garnitură (şaibă) din polipropilenăşi/ sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune ($\Delta \mathrm{P}$) în funcţie de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duză	Suprafaţă filtrantă (mm ${ }^{2}$)	Dimensiune filet tijă	Dimensiune gaurả montaj (mm)
R 24x0,2-M24	96	M24	$\varnothing 24 \div \varnothing 27$
R 36x0,2-M24	144	M24	$\varnothing 24 \div \varnothing 27$
R 36x0,4-M24	288	M24	$\varnothing 24 \div \varnothing 27$
R 36x0,45-M24	324	M24	$\varnothing 24 \div \varnothing 27$
R 24x2,0-M24	912	M24	$\varnothing 24 \div \varnothing 27$
R 24x2,6-M24	1248	M24	Ø $24 \div$ - 27

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RC

Duzele tip RC sunt utilizate în general în următoarele utilaje:

- filtre limpezire;
- filtre cu pat mixt.

Duzele tip RC sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant.

Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime maximă de 34 mm .

Duza tip RC conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă.

Opţional duzele RC pot fi prevăzute cu garnitură (şaibă) din polipropilenă (4) şi / sau garnitură din cauciuc (5).

Diagrama de variaţie a pierderilor de presiune ($\Delta \mathrm{P}$) în funcţie de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune filet tijă	Dimensiune gaură montaj
RC 24x0,2-M24	96	M24	$\varnothing 24 \div \varnothing 27$
RC 36x0,2-M24	144	M24	Ø $24 \div \varnothing 27$
RC 36x0,4-M24	288	M24	$\varnothing 24 \div \varnothing 27$
RC 36x0,45-M24	324	M24	Ø $24 \div \varnothing 27$
RC 24x2,0-M24	912	M24	$\varnothing 24 \div \varnothing 27$
RC 24x2,6-M24	1248	M24	$\emptyset 24 \div \varnothing 27$

Duză (crepină) tip RCD

Duzele tip RCD sunt utilizate în general în filtre cu distribuitori sau colectori.
Duzele tip RCD sunt realizate în mai multe tipuri constructive funcţie de forma garniturii pentru ţeava pe care se montează (rotundă - RCD-R sau pătrată - RCD-P) sau a secţiunii de trecere a elementului filtrant.
Acestea pot fi montate pe ţevile de la colectori/ distribuitori cu diametrul/ latura de $88 \div 100 \mathrm{~mm}$.

Duza tip RCD conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă;
4. Capac;
5. Garnitură (plană - pentru tip duză RCD-P sau profilată - pentru tip duză RCD-R).

Diagrama de variaţie a pierderilor de presiune (ΔP) în funcţie de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

$-m^{3} / h \longrightarrow$

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune filet tijă	Dimensiune gaurả montaj
RCD 24x0,2-M24-R	96	M24	$\varnothing 24 \div \varnothing 27$
RCD 36x0,2-M24-R	144	M24	Ø $24 \div$ ¢ 27
RCD 36x0,4-M24-R	288	M24	$\varnothing 24 \div \varnothing 27$
RCD 36x0,45-M24-R	324	M24	$\varnothing 24 \div \varnothing 27$
RCD 24x2,0-M24-R	912	M24	$\varnothing 24 \div$ - 27
RCD 24x2,6-M24-R	1248	M24	$\varnothing 24 \div \square 27$
RCD 24x0,2-M24-P	96	M24	$\varnothing 24 \div \varnothing 27$
RCD 36x0,2-M24-P	144	M24	$\varnothing 24 \div \varnothing 27$
RCD 36x0,4-M24-P	288	M24	$\varnothing 24 \div \square 27$
RCD 36x0,45-M24-P	324	M24	$\emptyset 24 \div \varnothing 27$
RCD 24x2,0-M24-P	912	M24	$\varnothing 24 \div \varnothing 27$
RCD 24x2,6-M24-P	1248	M24	$\varnothing 24 \div \varnothing 27$

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RCM

Duzele tip RCM sunt utilizate în general în filtre mecanice cu cuarţ.
Duzele tip RCM sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant.

Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime cuprinsă între 60 şi 90 mm .

Duza tip RCM conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă.

Opțional duzele RCM pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi / sau garnitură din cauciuc.

Diagrama de variație a pierderilor de presiune (ΔP) în funcție de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duză	Suprafaţă filtrantă mm^{2}	96	M24
RCM $24 \times 0,2-$ M24	144	M24	Dimensiune gaură montaj
RCM $36 \times 0,2-$ M24	288	Ø24 $\div \varnothing 27$	
RCM $36 \times 0,4-$ M24	324	M24	$\varnothing 24 \div \varnothing 27$
RCM $36 \times 0,45-$ M24	912	M24	$\varnothing 24 \div \varnothing 27$
RCM $24 \times 2,0-$ M24	1248	M24	$\varnothing 24 \div \varnothing 27$
RCM $24 \times 2,6-$ M24	M24	$\varnothing 24 \div \varnothing 27$	

Duză (crepină) tip RD

Duzele tip RD sunt utilizate în general pentru montarea prin înşurubare în găurile filetate (M24) de pe braţele colectorilor / distribuitorilor.

Duzele tip RD sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant.

Duza tip RD conține următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive).

Opţional duzele RD pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi / sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune (ΔP) în funcție de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune filet tijă
RD $24 \times 0,2-$ M24	96	M24
RD 36x0,2 - M24	144	M24
RD 36x0,4 - M24	288	M24
RD 36x0,45 - M24	324	M24
RD 24x2,0 - M24	912	M24
RD 24x2,6 - M24	1248	M24

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RF

Duzele tip RF suntutilizate în general în filtre cu mai multe camere.
Duzele tip RF sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementelor filtrante.

Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime cuprinsă între 22 şi 32 mm .

Duza tip RF conţine următoarele componente:

1. Tijă RF şi tijă RD (câte o bucată din fiecare tip);
2. Element filtrant (6 variante constructive);
3. Element filtrant (6 variante constructive).

Opţional duzele RF pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi / sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune (ΔP) în funcţie de debit (Q) şi dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duza	Suprafaţă filtrantă mm^{2}	Dimensiune gaurả montaj
RF-24x0,2-Ø30-24x0,2-RD	96	$\varnothing 30 \div \varnothing 34$
RF-36x0,2-Ø30-36x0,2-RD	144	$\varnothing 30 \div \varnothing 34$
RF-36x0,4-Ø30-36x0,4-RD	288	$\varnothing 30 \div \varnothing 34$
RF-36x0,45-Ø30-36x0,45-RD	324	$\varnothing 30 \div \varnothing 34$
RF-24x2-ø30-24x2-RD	912	$\varnothing 30 \div \varnothing 34$
RF-24x2,6-Ø30-24x2,6-RD	1248	$\varnothing 30 \div \varnothing 34$

Duză (crepină) tip RL

Duzele tip RL sunt utilizate în general în filtre mecanice cu cuarţ.
Duzele tip RL sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant.

Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime cuprinsă între $10 \div 44 \mathrm{~mm}$.

Duza tip RL conține următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Piuliţă.

Opțional duzele RL pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi / sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune (ΔP) î funcție de debit (Q) si dimensiunile elementelor filtrante ($24 \times 0,2 / 36 \times 0,2$)

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune filet tija	Dimensiune gaurả montaj
RL 24x0, 2 - M24	96	M24	Ø $24 \div$ ¢27
RL 36x0,2-M24	144	M24	$\emptyset 24 \div \varnothing 27$
RL 36x0,4-M24	288	M24	$\varnothing 24 \div \varnothing 27$
RL 36x0,45-M24	324	M24	$\varnothing 24 \div \varnothing 27$
RL 24x2,0-M24	912	M24	$\varnothing 24 \div \square 27$
RL 24x2,6-M24	1248	M24	$\emptyset 24 \div \varnothing 27$

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RS

Duzele tip RS sunt utilizate în general în următoarele utilaje:

- filtre ionice;
- filtre cu strat compact.

Duzele tip RS sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant şi de gaura de trecere a supapei.

Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime cuprinsă între 14 şi 34 mm .
Duzele tip RS se montează pe plăcile din filtre cu regenerare ascendentă.

Duza tip RS conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Subansamblu supapă (2 variante constructive).

Opţional duzele RS pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi/ sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune
(ΔP) în funcţie de debit (Q) la regenerare şi dimensiunile găurii $\emptyset B$ de la subansamblu supapă pentru element filtrant $36 \times 0,4$

Observaţie: alte dimensiuni pentru gaura de la supapă " $\varnothing \mathrm{B}$ " se pot executa la cerere

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune gaurả montaj	Dimensiune gaurả supapă "ØB"
RS 24x0,2-M24	96	Ø $24 \div$ ¢ 27	Ø2 sau Ø2,8
RS 36x0,2-M24	144	Ø $24 \div \varnothing 27$	Ø2 sau Ø2,8
RS 36x0,4-M24	288	$\varnothing 24 \div \varnothing 27$	Ø2 sau Ø2,8
RS 36x0,45-M24	324	$\varnothing 24 \div \varnothing 27$	Ø2 sau Ø2,8
RS 24x2,0-M24	912	Ø $24 \div$ ¢ 27	Ø2 sau Ø2,8
RS 24x2,6-M24	1248	Ø $24 \div$ ¢ 27	Ø2 sau Ø2,8

Duză (crepină) tip RSD

Duzele tip RSD sunt utilizate în general în următoarele utilaje:

- filtre ionice;
- filtre cu strat compact.

Duzele tip RSD sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant şi de gaura de trecere a supapei.
Acestea pot fi montate pe plăci metalice cauciucate sau necauciucate, plăci din PAFS, cu grosime cuprinsă între 14 şi 34 mm .
Duzele tip RSD se montează pe plăcile din filtre cu regenerare descendentă.

Duza tip RSD conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Subansamblu supapă (2 variante constructive).

Opţional duzele RSD pot fi prevăzute cu garnitură (şaibă) din polipropilenă şi / sau garnitură din cauciuc.

Diagrama de variaţie a pierderilor de presiune ($\Delta \mathrm{P}$) în funcţie de debit (Q) la regenerare şi dimensiunile găurii $\emptyset B$ de la subansamblu supapă pentru element filtrant $36 \times 0,2$

Observaţie: alte dimensiuni pentru gaura de la supapă " $\emptyset \mathrm{B}$ " se pot executa la cerere

Model duza	Suprafaţă filtrantă mm^{2}	Dimensiune gaurả montaj	Dimensiune gaurả supapă "ØB"
RSD 24x0, 2 - M 24	96	Ø $24 \div$ ¢ 27	Ø2 sau Ø2,8
RSD 36x0,2-M24	144	$\emptyset 24 \div \square 27$	Ø2 sau Ø2,8
RSD 36x0,4-M24	288	$\varnothing 24 \div \varnothing 27$	Ø2 sau Ø2,8
RSD 36x0,45-M24	324	$\varnothing 24 \div \varnothing 27$	Ø2 sau Ø2,8
RSD 24x2,0-M24	912	$\varnothing 24 \div \varnothing 27$	Ø2 sau Ø2,8
RSD 24x2,6-M24	1248	$\emptyset 24 \div \varnothing 27$	Ø2 sau Ø2,8

ECHIPAMENTE TRATARE APĂ

DUZE (CREPINE) PENTRU STAŢII DE TRATARE A APEI POTABILE

Duzele pentru staţii de tratare a apei potabile sunt componente utilizate pentru reţinerea materialelor filtrante granulare (nisip cuarţos) din filtrele rapide şi împiedicarea trecerii acestora în afara filtrelor.
Condiţille tehnice de utilizare a duzelor sunt următoarele:

- Presiune maximă de lucru: 10bar.;
- Diferenţa de presiune maxim admisibilă: 6bar;
- Temperatura de lucru: max. $80^{\circ} \mathrm{C}$.

Elementele componente ale duzelor sunt realizate prin injecție din polipropilenă.
Uzual, montajul duzelor se face pe plăci de beton sau pe colectori - distribuitori (ţevi din material plastic, metalice, etc.) şi se utilizează element filtrant $36 \times 0,4$.
Etanşarea faţă de suprafaţa de aşezare se poate face cu garnituri flexibile din cauciuc sau garnituri rigide din polipropilenă.
Componenta principală a duzelor este elementul filtrant care are fante cu diverse dimensiuni:

Tip element filtrant	Număr de fante	Dimensiunea nominală a fantelor	Suprafata nominală de filtrare $\left(\mathrm{mm}^{2}\right)$	Culoare element filltrant
$24 \times 0,2$	24	0,2	96	Alb
$36 \times 0,2$	36	0,2	144	Alb
$36 \times 0,4$	36	0,4	288	Verde
$36 \times 0,45$	36	0,45	324	Roşu
$24 \times 2,0$	24	2,6	912	Alb
$24 \times 2,6$	24	1248	Galben	

Modelele duzelor fabricate de ROMIND nu sunt limitative. Se pot executa, la comandă diverse combinaţii de subansamble.

Duză (crepină) tip RACP

Duzele tip RACP sunt realizate în mai multe tipuri constructive funcție de secțiunea de trecere a elementului filtrant şi pot fi montate pe plăci cauciucate sau necauciucate unde nu există acces de ambele părți ale acestora.

Acestea pot fi montate în găuri lise, pe plăci cu grosime cuprinsă între 2 şi 8 mm .

Duza tip RACP contine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Bucşă elastică.

Opțional duzele RACP pot fi prevăzute cu garnitură (şaibă) din cauciuc.

Diagrama de variație a pierderilor de presiune (ΔP) în funcție de debit (Q) şi dimensiunile elementelor filtrante ($36 \times 0,2 / 36 \times 0,4$)

Model duză	$\begin{aligned} & \text { Suprafaţă filtrantă } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	Grosime placă "S" (mm)	Dimensiune gaură montaj
RACP 24x0,2-"S"	96	$4 \div 10$	Ø28 ${ }_{0}^{+0,5}$
RACP 36x0,2-"S"	144	$4 \div 10$	$\varnothing 28{ }_{0}^{+0,5}$
RACP 36x0,4-"S"	288	$4 \div 10$	$\varnothing 28{ }_{0}^{+0,5}$
RACP 36x0,45-"S"	324	$4 \div 10$	$\varnothing 28{ }_{0}^{+0,5}$
RACP 24x2,0-"S"	912	$4 \div 10$	Ø28 ${ }_{0}^{+0,5}$
RACP 24x2,6-"S"	1248	$4 \div 10$	$\varnothing 28{ }_{0}^{+0,5}$

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RAC

Duzele tip RAC sunt utilizate în general în drenaje cu colectori cu secţiune circulară.
Duzele tip RAC sunt realizate în mai multe tipuri constructive funcţie de dimensiunea bucşei elastice sau a secţiunii de trecere a elementuluif filtrant.

Duza tip RAC conţine următoarele componente:
1.Tijă;
2. Element filtrant (6 variante constructive);
3. Bucşă elastică (9 variante constructive).

Diagrama de variație a pierderilor de presiune (ΔP) în funcţie de debit (Q) şi dimensiunile elementelor filtrante ($36 \times 0,2 / 36 \times 0,4$)

Crepine RAC pentru montaj pe ţevi cu găuri cu diametru de 28 mm :

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune diametru țeavă montaj ØD	Dimensiune gaură montaj
RAC ØD 24x0,2-Ø28	96		$\emptyset 28{ }_{0}^{+0,5}$
RAC ØD 36x0,2-Ø28	144	$\square 60 \times(5 \pm 0,5)$	$\emptyset 28{ }_{0}^{+0,5}$
RAC ØD 36x0,4-Ø28	288	$\varnothing 90 \times(6,7 \pm 1)$	Ø28 ${ }_{0}^{+0,5}$
RAC ØD 36x0,45-Ø28	324	$\begin{aligned} & \varnothing 110 \times(8,2 \pm 2) \\ & \varnothing 150 \times(7,5 \pm 2) \end{aligned}$	$\emptyset 28{ }_{0}^{+0,5}$
RAC ØD 24x2,0-Ø28	912	$\varnothing 160 \times(4 \pm 0,5)$	Ø $288_{0}^{+0,5}$
RAC ØD 24x2,6-Ø28	1.248		$\emptyset 28{ }_{0}^{+0,5}$

Crepine RAC pentru montaj pe ţevi cu găuri cu diametru de 29 mm :

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune diametru ţeavă montaj $\emptyset \mathrm{D}$	Dimensiune gaurả montaj
RAC ØD 24x0,2-Ø29	96	$\begin{aligned} & \varnothing 90 \times(6,7 \pm 1) \\ & \varnothing 110 \times(8,2 \pm 2) \\ & \varnothing 150 \times(7,5 \pm 2) \\ & \varnothing 160 \times(10 \pm 2) \end{aligned}$	Ø29 ${ }_{0}^{+0,5}$
RAC ØD 36x0,2-Ø29	144		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 36x0,4-Ø29	288		$\varnothing 29{ }_{0}^{+0,5}$
RAC ØD 36x0,45-Ø29	324		Ø $29{ }_{0}^{+0,5}$
RAC ØD 24x2,0-Ø29	912		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 24x2,6-Ø29	1.248		Ø29 ${ }_{0}^{+0,5}$

Duză (crepină) tip RAD

Duzele tip RAD sunt utilizate în general în drenaje cu colectori cu secțiune circulară.
Duzele tip RAD sunt realizate în mai multe tipuri constructive functie de dimensiunea bucşei elastice sau a sectiuniii de trecere a elementului filtrant.

Duza tip RAD conține următoarele componente:
1.Tijă;
2. Element filtrant (6 variante constructive);
3. Bucşă elastică (4 variante constructive).

Opțional duzele RAD pot fi prevăzute cu garnitură (şaibă) din cauciuc.

Diagrama de variație a pierderilor de presiune ($\Delta \mathrm{P}$) în funcție de debit (Q) şi dimensiunile elementelor filtrante ($36 \times 0,2 / 36 \times 0,4$)

Crepine RAD pentru țevi cu găuri cu diametru de 28 mm :

Model duză	Suprafată filtrantă mm²	Dimensiune diametru teavă montaj ØD	Dimensiune gaură montaj
RAD ØD 24x0,2-Ø28	96	$\begin{aligned} & \varnothing 150 \times(7,5 \pm 2) \\ & \varnothing 160 \times(4 \pm 0,5) \end{aligned}$	$\varnothing 28{ }_{0}^{+0,5}$
RAD ØD 36x0,2-Ø28	144		$\varnothing 28{ }_{0}^{+0,5}$
RAD ØD 36x0,4-Ø28	288		$\varnothing 28{ }_{0}^{+0,5}$
RAD ØD 36x0,45-Ø28	324		$\emptyset 28{ }_{0}^{+0,5}$
RAD ØD 24x2,0-Ø28	912		$\emptyset 28{ }_{0}^{+0,5}$
RAD ØD 24x2,6-Ø28	1.248		Ø $28{ }_{0}^{+0,5}$

Crepine RAD pentru montaj pe țevi cu găuri cu diametru de 29 mm :

Model duză	Suprafaţă filtrantă mm^{2}	Dimensiune diametru teavă montaj ØD	Dimensiune gaurǎ montaj
RAD ØD 24x0,2-Ø29	96	$\begin{aligned} & \varnothing 150 \times(7,5 \pm 2) \\ & \varnothing 160 \times(10 \pm 2) \end{aligned}$	$\varnothing 29{ }_{0}^{+0,5}$
RAD ØD 36x0,2-Ø29	144		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 36x0,4-Ø29	288		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 36x0,45-Ø29	324		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 24x2,0-Ø29	912		Ø29 ${ }_{0}^{+0,5}$
RAC ØD 24x2,6-Ø29	1.248		Ø29 ${ }_{0}^{+0,5}$

ECHIPAMENTE TRATARE APĂ

Duză (crepină) tip RAP

Duzele tip RAP sunt realizate în mai multe tipuri constructive funcţie de secţiunea de trecere a elementului filtrant si de piesa de montare în placa de beton.

Acestea pot fi montate pe plăci din beton cu grosimea de $50 \div 110 \mathrm{~mm}$.
Pentru plăcile de beton noi se utilizează duzele care au în componenţă manşonul care urmează a fi înglobat în placa de beton.
Pentru retehnologizarea/ modernizarea plăcilor de beton existente se utilizează duzele care au în componenţă o reducţie sau duzele fără manşon sau reducţie.

Duza tip RAP conţine următoarele componente:

1. Tijă;
2. Element filtrant (6 variante constructive);
3. Manşon M24;
4. Reducţie scurtă $\mathrm{M} 30 \times 17$ sau lungă $\mathrm{M} 30 \times 27$.

Diagramele de variaţie ale pierderilor de presiune (ΔP) la regenerare în funcţie de debit (Q) şi dimensiunile elementelor filtrante $(36 \times 0,2 / 36 \times 0,4)$ pentru cele două tipuri ale duzelor tip RAP:

Crepine RAP pentru plăci de beton noi (se livrează cu manşon M24 ce urmează a fi încastrat în placa de beton)

Model duză	Suprafaţă filtrantă $\left(\mathrm{mm}^{2}\right)$
RAP $24 \times 0,2-$ M24	96
RAP $36 \times 0,2-$ M24	144
RAP $36 \times 0,4-$ M24	288
RAP $36 \times 0,45-$ M24	324
RAP $24 \times 2,0-$ M24	912
RAP $24 \times 2,6-$ M24	1248

Crepine RAP pentru plăci de beton existente, prevăzute cu manşoane M30 (se livrează cu reducție lungă $l_{f}=27 \mathrm{~mm}$ sau reducție scurtă $l_{f}=17 \mathrm{~mm}$)

Model duză	Suprafaţă filtrantă $\left(\mathrm{mm}^{2}\right)$
	96
RAP 36x0,2-M30x1f	144
RAP 36x0,4-M30x\|f	288
RAP 36x0,45- M30xIf	324
RAP $24 \times 2,0-{\text { M }\left.30 x\right\|_{f}}$	912
RAP 24x2,6-M30x\|f	1248

Crepine RAP pentru plăci de beton existente, prevăzute cu manşoane M24
(se livrează fără manşon M24)

Model duză	Suprafaţă filtrantă $\left(\mathrm{mm}^{2}\right)$
RAP $24 \times 0,2$	96
RAP $36 \times 0,2$	144
RAP $36 \times 0,4$	288
RAP $36 \times 0,45$	324
RAP $24 \times 2,0$	912
RAP $24 \times 2,6$	1248

Dispozitiv de montaj manşoane în plăci de beton

Dispozitivele pentru montajul manşoanelor în plăcile de beton sunt realizate în mai multe tipuri constructive, în funcţie de grosimea plăcii de beton ce urmează a fi realizată.
Acestea pot fi utilizate pentru realizarea de plăci din beton cu grosime cuprinsă între 50 şi 110 mm .

Componenţă:

1. Capac filetat;
2. Tijă M24;
3. Piesă intermediară;
4. Inel "O";

5,6 . Şurub cu cap hexagonal (2 buc.).

Instrucţiuni generale de montaj ale manşoanelor aferente crepinelor RAP în plăcile de beton

Prezentele instrucţiuni se referă la montajul manşonelor filetate M24 în plăcile de beton ale filtrelor cu nivel liber. Înainte de montaj se verifică componenţa şi integritatea dispozitivului de montaj.

1. Se verifică pe placa de la cofrag distanţa dintre găurile $\varnothing 8,5$. Conform figurii se introduc în aceste găuri, pe partea inferioară, şuruburile M8x35; pe partea cealaltă se înşurubează piesa intermediară. Strângerea se face cu un moment maxim de 5 Nm .

2. Se montează separat (ca subansamblu) capacul filetat M24 şi tija M24 prin înşurubare manuală; acest subansamblu se montează prin înşurubare în manşonul filetat M24. Strângerea elementelor componente se realizează manual.

3. Se montează subansamblul obţinut la punctul 2 în piesa intermediară şi se înşurubează şurubul M8. Strângerea se face cu un moment maxim de 5 Nm .

Placa cofrag
5. După întărirea betonului se deşurubează şurubul M8, capacul filetat M24 şi tija M24; se deşurubează şuruburile M8x35 şi se scoate placa cofrag. Se reînşurubează şuruburile $M 8 \times 35$ în piesele intermediare pentru a permite scoaterea acestora prin tragere din placa de beton.

4. După montajul tuturor dispozitivelor poziţionate conform figurii, se toarnă beton până se obţine grosimea de placă dorită.
Pentru uniformizarea betonului se recomandă folosirea unei plăci vibrante pe care se aşează cofragul pentru placă.

6. Se înfiletează tija asamblată cu elementul filtrant în manşonul M24 înglobat în placa de beton.

ECHIPAMENTE TRATARE APĂ

MODULE TUBULARE DE SEDIMENTARE

Modulele tubulare pentru sedimentare (apă potabilă sau apă uzată) sunt echipamente utilizate î decantoare pentru:

- mărirea capacităţii de decantare;
- micşorarea cantităţiii de elemente solide (floculi);
- mărirea încărcării specifice hidraulice;
- creşterea vitezei de decantare;
- reducerea numărului de sisteme de decantare.

Montajul se face pe sisteme speciale de susţinere.
Modulele tubulare sunt realizate în diferite forme constructive:

Forina

Forma D 1

Foina D2

Module tubulare de sedimentare pentru apă potabilă

Cod: FS 41.50

Modulele tubulare pentru sedimentare sunt obţinute prin asamblarea prin lipire sau sudare de elemente profilate obținute prin extrudare.
În funcţie de aplicaţie (de dimensiunea bazinului în care se montează) se execută şi utilizează module cu diverse dimensiuni.
Tehnologul instalaţiei va stabili în mod concret înălţimea şi înclinarea modulelor.
Uzual, înălţimea modulului este de 1000 mm şi înclinaţia de asamblare a plăcilor profilate de 55° sau 60°.
Modulele tubulare pentru sedimentare tip FS 41.50 sunt realizate prin asamblarea şi lipirea profilelor extrudate din polipropilenă.

Forme constructive (profile):

FS 41.50

Module tubulare de sedimentare pentru ape uzate

Cod: FS 41.50 / FS 41.80 / FS 41.84

Modulele tubulare pentru sedimentare sunt obținute prin asamblarea prin lipire sau sudare de elemente profilate din PVC sau PP rigid obţinute prin extrudare.
În funcţie de aplicaţie (de dimensiunea bazinului în care se montează) se execută şi utilizează module cu diverse dimensiuni şi forme.

Tehnologul instalației va stabili în mod concret distanţa dintre plăci, înălţimea şi înclinarea modulelor.

Uzual, înălţimea modulului este de 1000 mm şi înclinaţia de asamblare a plăcilor profilate de 55° sau 60°.

Forme constructive (profile):

FS 41.50

FS 41.80

FS 41.84

Cod	FS 41.50		FS 41.80		FS 41.84
Distanţa între plăci (mm)	44		80		82
Aria de sedimentare la inclinarea de $60^{\circ}\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	11			6,25	
Aria de sedimentare la îclinarea de $55^{\circ}\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	13			7	
Înăļimea modulului (mm)	$500 \div 2000$			$700 \div 2000$	
Îañļime standard modul (mm)	1000			1000 / 1500	
Raza hidraulică (mm)	15		28		26
Material	PVC	PP	PVC	PVC	PP
Greutate uscată modul ($\mathrm{kg} / \mathrm{m}^{3}$)	80	50	55	62	35
Temperatura maximă de lucru (${ }^{\circ} \mathrm{C}$)	55	75	55	55	75
Dimensiune modul ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)	se execută la cerere				

ECHIPAMENTE TRATARE APĂ

CAPTATOARE DE MASĂ IONICĂ

Captatoarele (liniare sau transversale) de masă schimbătoare de ioni sunt utilizate pentru reţinerea masei schimbătoare de ioni pierdute din filtrele de tratare a apei, în timpul procesului tehnologic, ca urmare a spargerii unor duze sau a montajului necorespunzător al acestora.

Captatoare liniare de masă schimbătoare de ioni

Cod: CML-Dn

Captatoarele liniare de masă schimbătoare de ioni sunt realizate în mai multe variante constructive permiţând o gamă largă de debite de fluid vehiculat (între 20 şi $200 \mathrm{~m}^{3} / \mathrm{h}$) şi având dimensiuni de flanşe de cuplare adaptate condiţilor de montaj. La cerere, pe lângă tipurile constructive prezentate, pot fi executate captatoare de masă ionică cu alte dimensiuni (Dn flanşe şi debite), adaptate cerinţelor clientului.

Captatoarele liniare de masă au următoarele componente:

- corp cauciucat prevăzut cu racorduri de intrare, iesire, aerisire şi golire;
- cartuş filtrant, realizat din elemente filtrante circulare, executate din polipropilenă, asamblate cu tiranţi din oţel inoxidabil.

Denumire parametru	Valoare
Fluid de lucru	apă dedurizată, apă demineralizată
Mediul de lucru	acid sau bazic (pH 2 $\div 12$)
Presiunea de lucru maxim admisă	10 bar
Pierderi de presiune î funcţionare (bar)	$0,1 \div 0,2$
(funcţie de gradul de murdărire)	
Dimenseratura de lucru	max. $80^{\circ} \mathrm{C}$
Racorduri (dimensiuni conform SR ISO)	$0,25 \pm 0,050$

Cod	Dn intrare/ieşire	Q $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	Lmax (mm)	Dmax (mm)	$L_{\text {cart. }}$ fil. (mm)	Nr. inele	H (mm)	Dn spălare
CML-50	50	20	500	285	221	125	-	-
CML-80	80	40	600	285	340	195	-	-
CML-100	100	80	760	395	402	335	432	25
CML-125	125	100	830	395	476	397	432	25
CML-150	150	150	900	505	510	443	516	25
CML-200	200	200	1030	505	700	608	516	25
CML-250	250	300	1080	505	750	650	516	25

VIZORI

Vizorii sunt componente montate pe recipiente sub presiune sau vid cu scopul de a permite vizualizarea amestecului de soluţie şi răşină (masǎ schimbătoare de ioni) pentru a putea controla nivelul şi turbulenţa acesteia în procesul de regenerare (afânare / regenerare / spălare).
Vizorii sunt realizaţi din plăci de sticril (plexiglas) cu grosimi cuprinse între 20 şi 50 mm .

Condiții de utilizare:

1. Fluid de lucru: apă, aer şi soluţii de max. 15% de $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{NaOH}, \mathrm{NaCl}$, $\mathrm{NH}_{3}, \mathrm{Na}_{3} \mathrm{PO}_{4}$, etc;

2. Presiunea maximă de lucru: 10 bar ;
3. Presiunea de probă hidraulică (odată cu recipientul): 12,5bar;
4. Temperaturi de lucru: $5^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$;
5. Coeficient de siguranţă: 3;
6. Nu se vor utiliza la: produse petroliere, fluide toxice, letale sau explozive.

Vizori ovali

Cod: VOA / VOB

Vizorii ovali sunt realizați în două forme constructive: plană (VOA) sau cu bordură (VOB), fiecare formă având diverse dimensiuni constructive şi de gabarit (a se vedea caracteristicile tehnice).
La cerere, se pot executa vizori în orice altă variantă constructivă, având şi alte dimensiuni decât cele prezentate, pe baza desenului beneficiarului sau prin indicarea dimensiunilor constructive şi de gabarit.

Vizori ovali plani - tip VOA

Cod	$\mathrm{L}(\mathrm{mm})$	$E(\mathrm{~mm})$	$R(\mathrm{~mm})$	$G(\mathrm{~mm})$
VOA-200x80	200	80	40	20
VOA-260x70	260	70	35	20

Vizori ovali cu bordură - tip VOB

Cod	L (mm)	E1 (mm)	E2 (mm)	$R 1(\mathrm{~mm})$	$R 2(\mathrm{~mm})$	G (mm)
VOB-G-200x80	200	50	80	25	40	$30 ; 40 ; 50$
VOB-G-260x70	260	40	70	20	35	$30 ; 40 ; 50$

ECHIPAMENTE TRATARE APĂ

Vizori circulari - tip VRA sau VRB

Cod: VRA / VRB

Vizorii circulari sunt realizaţi în două forme constructive: plană (VRA) sau cu bordură (VRB), fiecare formă având diverse dimensiuni constructive şi de gabarit (a se vedea caracteristicile tehnice).

La cerere, se pot executa vizori în orice altă variantă constructivă, având şi alte dimensiuni decât cele prezentate, pe baza desenului beneficiarului sau prin indicarea dimensiunilor constructive şi de gabarit.

Vizori circulari plani - tip VRA

Cod	$\boldsymbol{\sigma D}(\mathrm{mm})$	$\mathbf{G}(\mathrm{mm})$
VRA-120	120	20
VRA-136	136	20
VRA-156	156	20
VRA-186	186	20
VRA-210	210	20
VRA-266	266	20

Vizori circulari cu bordură - tip VRB

Cod	ØD1 (mm)	$\mathbf{D D 2}(\mathrm{mm})$	$\mathrm{S}(\mathrm{mm})$	$G(\mathrm{~mm})$
VRB-G-120	120	60	16	$30 ; 40 ; 50$
VRB-G-136	136	70	16	$30 ; 40 ; 50$
VRB-G-156	156	90	16	$30 ; 40 ; 50$
VRB-G-186	186	115	18	$30 ; 40 ; 50$
VRB-G-210	210	140	20	$30 ; 40 ; 50$
VRB-G-266	266	190	20	$30 ; 40 ; 50$

Vizori dreptunghiulari - tip VDA sau VDB

Cod: VDA / VDB

Vizorii dreptunghiulari sunt realizați în două forme constructive: plană (VDA) sau cu bordură (VDB), fiecare formă având diverse dimensiuni constructive şi de gabarit (a se vedea caracteristicile tehnice).

La cerere, se pot executa vizori în orice altă variantă constructivă, având şi alte dimensiuni decât cele prezentate, pe baza desenului beneficiarului sau prin indicarea dimensiunilor constructive şide gabarit.

Vizori dreptunghiulari plani - tip VDA

Cod	L(mm)	$E(\mathrm{~mm})$	$G(\mathrm{~mm})$
VDA-280x80	280	80	20
VDA-265x132	265	132	20

Vizori dreptunghiulari cu bordura - tip VDB

Cod	L1 (mm)	L2 (mm)	E1 (mm)	E2 (mm)	G (mm)
VDB-G-280x80	250	280	50	80	$30 ; 40 ; 50$
VDB-G-352x132	300	352	80	132	$30 ; 40 ; 50$

COMPONENTE FUNCŢIONALE PENTRU DEGAZOARE

Componente funcționale pentru degazoare sunt utilizate la dispersarea peliculară a apei din coloanele de degazare.

Inele Raschig

Inele Raschig sunt piese din material plastic (aproximativ egale în lungime şi diametru) folosite în număr mare sub formă de straturi (pături) pe grătare perforate în coloane de degazoare CO_{2} pentru degazare sau alte procese chimice. Ele oferă o suprafaţă mare de interacțiune între lichid şi gaz sau vapori în întregul volum al coloanei. Inelele Raschig sunt executate prin injecţie din diferite materiale plastice: polistiren şoc, copolimerABS sau polietilenă de înaltă densitate.

Inelele Raschig sunt realizate într-o singură tipodimensiune.
Condiţii de utilizare:

- Fluid de lucru: necoroziv si neoxidant faţă de masa plastică, de regulă apǎ decarbonatată ($\mathrm{pH}=1 \div 5$), aer şi CO_{2};

- Presiunea maximă de lucru: 10 bar;
- Temperatura maximă de lucru: $80^{\circ} \mathrm{C}$.

Notă: Pentru comandă se va preciza cantitatea necesară în m^{3} (nu în bucăţi) şi materialul inelelor.

Caracteristici singulare	Valoare
Suprafaţa nominală de transfer	$55 \mathrm{~cm}^{2}$
Dimensiuni de gabarit	$\varnothing 25 \times 25$
Masa netă	$0,0021 \mathrm{~kg}$ (pt. PEID)

Caracteristici în vrac, pentru un volum de $1 \mathrm{~m}^{3}$	Valoare
Număr bucăţi	aprox. $55.000 \mathrm{buc} / \mathrm{m}^{3}$
Suprafaţa totală de contact	$352 \mathrm{~m}^{2} / \mathrm{m}^{3}$
Volum liber	$0,841 \mathrm{~m}^{3} / \mathrm{m}^{3}$
Greutate	$135 \mathrm{~kg} / \mathrm{m}^{3}(\mathrm{pt}.$. PEID)
Dimensiune fantă sau gaură pentru grătarul 18 mm pe care se montează nu necesită Conservare, climatizare nu	
Control ISCIR	

REFERINT]E

Listă de referinţe pentru staţii de tratare a apei potabile echipate cu duze (crepine) Romind T\&G

| | Staţil de tratare a apei potabile | |
| :---: | :---: | :---: | :---: |
| Arcuda (Bucureşti) | Dumbrava (Sibiu) | Orlea şi Sânpetru (Hunedoara) |
| Baia Mare | Gilău (Cluj) | Palas (Constanţa) |
| Bega (Timiş) | Haţeg (Hunedoara) | Prundu Bârgăului (Bistriţa) |
| Buzău | Huşi (Vaslui) | Sfântu Gheorghe (Covasna) |
| Chişcani (Brăila) | Martineşti (Satu Mare) | Slobozia |
| Dărmăneşti (Bacău) | Nehoiu (Buzău) | Tǎrlung (Braşov) |

Listă de referinţe pentru staţii de tratare şi epurare chimică echipate cu produse Romind T\&G

| | Staţil de tratare şi epurare chimică | |
| :---: | :---: | :---: | :---: |
| Amonil Slobozia | OMV Petrom (Petrobrazi) | SE Galaţi |
| Amurco Bacău | Rominserv Petromidia | SE Oradea |
| Aromet Buzău | Rifil Săvineşti | SE Paroşeni |
| CNU Feldioara | SE Borzeşti | Termica Suceava |
| Donau Chem Turnu Măgurele | SE Bucureşti | Uzina Electrică Zalău |
| Intergaz Zimnicea | SE Constanţa | Uzina Termoelectrica Midia |
| Nitroporos Făgăraş | SE Craiova II | Viromet Victoria |

TURNURI DE RĂCIRE

Societatea noastră pune la dispoziţia clienților săi soluții tehnico-economice optimizate pentru rezolvarea oricăror probleme cu care aceştia se confruntă în domeniul turnurilor de răcire sau al circuitelor de răcire. Soluțiile tehnico-economice oferite de societatea noastră garantează obţinerea de reduceri semnificative ale cheltuielilor de investiţii şi de exploatare şi totodată creşterea productivităţii instalaţi̦ilor de răcire. Economiile de combustibil sau energie realizate ca urmare a aplicării practice a soluțiilor propuse vor permite amortizarea rapidă a cheltuielilor de investiţii efectuate pentru repararea/modernizarea turnului de răcire.

Societatea ROMIND T\&G:

- produce şi livrează componente funcţionale moderne pentru turnuri de răcire noi sau pentru reabilitarea / retehnologizarea / modernizarea turnurilor de răcire existente, de orice tip și capacitate;
- livrează la cheie turnuri de răcire de capacitate mică sau medie, cu ventilare mecanică (tiraj forţat);
- furnizează servicii de asistenţă tehnică, inginerie tehnologică, studii de soluţie, expertizare funcţională (probe de performanţă), pentru turnuri de răcire şi circuite de răcire.

Principalele avantaje ale folosirii produselor şi serviciilor noastre în domeniul turnurilor de răcire sunt următoarele:

- garanția punerii în operă a celor mai bune soluții tehnice, profesionale, optimizate pentru obiectivul concret;
- garanţia achiziționării unor echipamente de calitate superioară, certificate şi agrementate;
- garanţia livrării la timp a produselor şi serviciilor solicitate (documentaţie tehnică de execuţie, echipamente funcţionale, lucrări de asamblare şi montaj);
- garanția realizǎrii unor indicatori tehnici şi economici superiori în exploatare ce conduc la realizarea de economii prin reduceri de costuri de producţie:
- reduceri semnificative ale temperaturilor apei recirculate prin instalaţille tehnologice;
- reduceri semnificative ale consumurilor energetice pentru pomparea apei şi ventilarea aerului;
- creşteri ale randamentelor proceselor tehnologice deservite de turnul de răcire;
- îmbunătăţirea operabilităţii şi reducerea costurilor de întreţinere / exploatare (echipamentele funcţionale necesită întreţinere redusă şi au durată mare de viaţă);
- reducerea necesarului de apă de adaos şi a pierderilor de apă;
- reducerea poluării mediului prin: micşorarea pierderilor de apă prin antrenare de picături, reducerea poluării chimice şi termice, reciclabilitatea materialelor, reducerea zgomotului;
- creşterea securităţii şi fiabilităţii în exploatare, prin evitarea incidentelor şi avariilor în instalaţie, creşterea duratei de viaţă a echipamentelor, evitarea incendiilor sau îngheţului în interiorul turnului de răcire, limitarea problemelor cauzate de eroziune, coroziune, givraj al palelor ventilatorului.

ECHIPAMENTE PENTRU TURNURI DE RĂCIRE

Categoriile de componente funcţionale moderne pentru turnuri de răcire noi sau pentru reabilitarea / retehnologizarea / modernizarea turnurilor de răcire existente, de orice tip şi capacitate sunt:

- umpluturi de turn;
- sisteme de distribuţie a apei în turn prevăzute cu dispozitive de dispersie a apei;
- separatoare de picături;
- sisteme de susţinere a echipamentelor funcţionale;
- sisteme de protecție antiîngheţ;
- agregate de ventilare (complete sau componente);

- sisteme de reglare automată a temperaturii apei din circuitul de răcire, prin varierea turaţiei ventilatorului (motor cu două turaţii, convertizor de frecvenţă); -echipamente auxiliare (pompe, vane etc.).

UMPLUTURĂ DE TURN

Performanţele termotehnice de ansamblu ale turnurilor de răcire sunt influenţate în cea mai mare măsură de caracteristicile funcţionale ale umpluturilor de turn utilizate în cadrul sistemelor de răcire.

Pot fi produse şi livrate două modele de umplutură de turn:

- umplutură peliculară (R27);
- umplutură mixtă (hibridă) de tip reţea (R80).

Principalele calităţi ale acestor umpluturi sunt:

- performanţe termotehnice foarte bune;

- indice cost de achiziție / eficacitate foarte bun;
- rezistenţă la factorii fizico - chimici şi biologici din apă şi aer;
- durata mare de viaţă în exploatare;
- rezistență la foc (materiale ignifuge sau ignifugate);
- greutate mică pe unitatea de volum;
-volum redus la transport (dacă elementele constitutive sunt în stare neasamblată);
- productivitate mare la montajul în instalație;
-nu poluează mediul ambiant.
În cadrul ofertei pentru fiecare aplicaţie în parte, se stabileşte prin calcul tehnico-economic, volumul necesar de umpluturǎ şi modalitatea optimă de configurare a acesteia, în funcţie de tipul şi caracteristicile dimensionale ale turnului de răcire, de cerinţ̧e funcţionale impuse de beneficiar şi de parametrii meteorologici din zona obiectivului.
Moduri de livrare pentru umplutura de turn:
a) Sub formă de elemente constitutive individuale neasamblate, ceea ce permite micşorarea volumului la transport; asamblarea în pachete a elementelor individuale între ele se efectuează in situ de către cumpărător, cu ajutorul unor bride de legătură (cazul umpluturii R80) sau prin lipire cu adezivi (cazul umpluturii R27).
b) Sub formă asamblată în pachete (module) ce urmează a fi montate direct în turnul de răcire pe un sistem de susținere adecvat.

TUNURI DE RĂCIRE

Umplutură mixtă tip R80

Cod: R80

Umplutura de turn R80 (realizată după o concepţie proprie brevetată) este 0 umplutură modernă, de ultimă generaţie, adecvată cerinţelor tehnologice ale turnurilor de răcire umede de orice tip, cu eficacitate funcțională foarte bună, practic necolmatabilă, rezistentă la influenţa factorilor fizico - chimici şila foc.

Umplutura R80 este de tip mixt (hibrid) având în componenţă elemente individuale sub aspect de reţea spaţială din polipropilenă (ignifugată sau neignifugată), cu ochiuri şi pliuri optimizate care generează în volumul acesteia atât picături, cât şi pelicule. Elementul constitutiv al reţelei umpluturii R80 are suprafaţa cutată oblic, proiecţia în plan a acestuia fiind fie un dreptunghi (când elementul este poziţionat vertical), fie un pătrat (când elementul este poziţionat orizontal). Prin alăturarea şi asamblarea cu bride a elementelor constitutive se formează pachete sau grătare cu structură spaţială complexă care conţin canale înclinate încrucişate.

Succedarea elementelor individuale în volumul umpluturii R80 se poate face în diverse moduri, cel mai uzitat fiind acela în care elementele constitutive sunt aşezate nedistanţat, unele lângă altele, cu pliurile elementelor alăturate, încrucişate în mod alternativ. În acest caz, canalele dintre elementele constitutive au o formă mai complexă (şicanată), dar sunt suficient de mari ca să asigure o bună circulaţie a aerului prin instalaţie (activarea tirajului).
Umplutura R80 valorifică in mod superior volumul spaţial pe care-I ocupă în instalaţie, prin maximizarea transferului termic şi de substanţă, concomitent cu minimizarea pierderilor aerodinamice şi a consumului de material.

Performanţele funcţionale ale umpluturii R80 sunt puţin afectate de fenomenul de colmatare cu impurităţi, datorită spaţiilor largi de circulaţie a aerului prin volumul acesteia, ceea ce-i conferă invulnerabilitate la acest fenomen, pe toată durata de viaţă în instalaţie.
Datorită intensităţii mari a proceselor de transfer, umplutura R80 se comportă mult mai bine decât umpluturi similare, de tipul "prin picurare (splash)" şi are performanţe termotehnice la fel de bune ca şi cele ale umpluturilor fără depuneri de tip "pelicular". Se realizează astfel temperaturi scăzute ale apei, pe toată durata de funcţionare a turnului de răcire.

Denumire parametru	Valoare
Agentul de răcire	Aer atmosferic cu sau fără noxe industriale
Temperatura apei la intrarea in umplutură (${ }^{\mathrm{C}}$)	5 ... 80
Temperatura aerului la intrarea in umplutură (${ }^{\circ} \mathrm{C}$)	-30 ... 80
Numărul de elemente tip reţe in stare asamblată (buc/m)	61
Înclinaţia canalelor	paralelă sau îcrucişata
Distanţa medie dintre elemente, $\mathrm{h}(\mathrm{mm}$)	80 ± 1
Îălţime pachet, $\mathrm{H}(\mathrm{mm})$	450
Lungime pachet, $\mathrm{L}(\mathrm{mm}$)	800 sau multiplii de 80 mm
Lăţime pachet, I (mm)	450
Masa umpluturii pe $1 \mathrm{~m}^{3}$ in stare asamblată ($\mathrm{kg} / \mathrm{m}^{3}$)	10,5
Rezistentă mecanică la tasarea fără deformare a pachetului, cu elementele constitutive în poziție verticală ($\mathrm{kN} / \mathrm{m}^{2}$)	4,6
Densitatea de stropire economic aplicabilă ($\mathrm{m}^{3} / \mathrm{m}^{2} \mathrm{~h}$)	$3 \div 15$
Suprafaţa de schimb de căldură şi substanţă ($\mathrm{m}^{2} / \mathrm{m}^{3}$)	pelicule: 21 / picături: $13 . .17$

Umplutură peliculară tip R27

Cod: R27

Umplutura de turn R27 este de tip pelicular. Umplutura este alcătuită din folii termoformate din PVC sau din polipropilenă ignifugată, care prin alăturare şi lipire/sudare între ele formează pachete (module) de diverse dimensiuni.

Umplutura de turn R27 poate echipa turnuri de răcire în contracurent şi curenţi transversali cu tiraj natural sau cu tiraj forţat. Umplutura R27 se poate utiliza deasemenea la: decantarea apei, sisteme de colectare şi infiltrare a apelor pluviale, sisteme de epurare biologică a apelor uzate, umidificatoare, instalaţii de spălare a
 gazelor.

Modulele de umplutură de turn de răcire se utilizează în unul sau mai multe straturi suprapuse.

Pentru intensificarea proceselor de schimb de căldură şi substanţă ce se realizează în volumul umpluturii, plăcile individuale se succedă astfel încât aliniamentele gofrajelor plăcilor adiacente să se încrucişeze între ele.

Denumire parametru	Valoare
Agentul de răcire	Aer atmosferic cu sau fără noxe industriale
Temperatura apei la intrarea în umplutură $\left({ }^{0} \mathrm{C}\right)$	$5 \div 55$
Temperatura aerului la intrarea în umplutură $\left.{ }^{\circ} \mathrm{C}\right)$	$-25 \div 55$
Grosimea foliei netermoformate (mm)	0,6
Distanţa medie dintre plăci, $\mathrm{h}(\mathrm{mm})$	27 ± 1
Înăļime modul, H	Standard (mm)
	Minim (mm)

SISTEME DE DISTRIBUŢIE A APEI ÎN TURNURILE DE RĂCIRE

Distribuţia apei în turnuri de răcire se realizează prin intermediul sistemelor de distribuție realizate din conducte, canale, elemente de conectare la canalele distribuitoare ale turnului, reducţii, coturi, capace etc.

Sistemul de distribuţie a apei reprezintă calea de transport a apei în interiorul turnului de răcire, pe suprafaţa irigată a turnului.
În funcţie de scopul tehnologic urmărit (întreţinere şi reparaţii curente cu turnul în funcțiune, protejarea turnului pe timp de iarnă) se realizează, fie o distribuţie
 uniformă a apei pe întreaga suprafaţă a turnului, fie o distribuţie uniformă pe zone parţiale, delimitate din punct de vedere funcţional.

Sistemul de distribuție a apei în turnul de răcire este astfel conceput încât să realizeze următoarele funcțiuni:

- să asigure capacitatea de preluare a debitului nominal de apă ce trebuie răcită, fără deversări la nivelul bazinelor şi a canalelor interioare de transport;
- să asigure transportul apei, în cantităţile necesare, către toate zonele irigate din interiorul turnului;
- să asigure presiunea necesară în faţa duzelor, pentru realizarea unei bune dispersii a apei;
- să realizeze o bună distribuţie a apeí, şi la debite parţiale;
- să realizeze cu uşurinţă scoaterea din funcţiune a unor zone din suprafaţa irigată, sau punerea în funcţiune a altor zone (spre exemplu pentru protecţia împotriva îngheţului);
- să aibă o poziţionare optimă în raport cu celelalte sisteme şi componente funcţionale sau constructive (umplutura turnului, grinzi, stâlpi, mantaua turnului), încât să scadă energia de pompare, să se realizeze o bună irigare a umpluturii, să se limiteze stropirea elementelor constructive, să necesite sisteme mai simple de susţinere a ţevilor de distribuţie.

Uzual sistemele de distribuţie a apei în turnuri de răcire conţin următoarele componente:

- Conducte sau ţevi de distribuție a apei, furnizate sub formă fasonată (prin debitare la lungimea necesară şi găurite pentru a permite fixarea dispozitivelor de dispersie) astfel încât să poată fi montate în turn. Uzual se folosesc ţevi din material plastic (PVC), însă la cererea clienţilor se pot folosişi ţevi din alte materiale plastice sau ţevi metalice;
- Mufe, coturi, ramificaţii şi reducţii ce permit realizarea legăturilor hidraulice între ţevile de distribuţie sau între ţevi şi jgeaburile de distribuţie a apei existente în turn;
-Echipamente de preaplin, aerisire, golire;
- Dopuri sau capace, ce se poziţionează la capătul liber al ţevilor de distribuție şi care permit, în cazul în care sunt demontate, spălarea depunerilor din interiorul ţevilor;
- Dispozitive de dispersie a apei şi sisteme de susţinere a conductelor sau ţevilor de distribuţie.

DISPOZITIVE DE DISPERSIE A APEl

Dispozitivele de dispersie a apei pentru turnurile de răcire au rolul să fragmenteze fluidul ce trebuie răcit (apa), în picături cu granulometrie şi arie de răspândire adecvate necesităţilor tehnologice ale acestor instalaţii şi să le distribuie cât mai uniform pe suprafaţa irigată a turnului, pe cât posibil, fără a stropi elementele constructive ale acestuia (grinzi, planşeul bazinului de distribuţie a apei, peretele interior al coşului de tiraj ş.a.).
Se pot fabrica diverse modele de dispozitive de dispersie, fiecare dintre ele având roluri şi destinaţii precise în cadrul proiectului tehnologic al turnului de răcire. Dispozitivele de dispersie a apei sunt ansambluri realizate din piese obţinute din
 injecție, din polipropilenăignifugată sau neignifugată.

Dispozitive de dispersie a apei în turnuri în contracurent - tip DIATR

Cod: vezi tabel

Dispozitivele de dispersie a apei tip DIATR sunt destinate turnurilor de răcire a apei în contracurent, cu tiraj natural sau forţat, prevăzute cu ţevi de distribuţie a apei.

Alegerea tipului optim de dispozitiv de dispersie necesar, definit prin tipul de dispersor, diametrul duzei, direcționarea jetului duzei - în sus sau în jos - se face ţinând seama de caracteristicile particulare ale fiecărei aplicații (debitul turnului, poziţia dispozitivului în raport cu elementele constructive interioare, sistemul de distribuţie căruia îi este destinat dispozitivul - de răcire sau de protecţie pe timp de iarnăş.a.).

Dispozitivele de dispersie a apei care echipează sistemul de distribuție propriu-zis al turnului sunt plasate pe ţevile de distribuţie a apei, deasupra umpluturii turnului, la o anumită distanţă (optimizabilă), faţă de cota superioară a umpluturii.

Dispozitivele de dispersie a apei, care echipează sistemul de protecţie la îngheţ pe timp de iarnă (sistem brevetat) sunt plasate sub umplutura turnului, pe toată suprafaţa turnului.

Dispozitivele de dispersie a apei tip DIATR se pot utiliza şi la turnurile de răcire în
 curenţi transversali, dacă acestea sunt dotate cu ţevi de distribuţie a apei (în loc de bazine de distribuție).

Dispozitivul de dispersie a apei tip DIATR conţine următoarele repere:

- dispersor (tip rozete cu fante, tip calotă - utilizate funcţie de condiţ̦ile specifice ale aplicaţiei);
- duză (ştuț);
- elemente de fixare pe ţevi (piuliţă specială şi piesă adaptoare);
- trepied;
- piuliţă fixare;
- prelungitor (în vederea creşterii presiunii hidrostatice a apei la duze sau pentru a evita stropirea elementelor constructive ale turnului se poate recurge la ataşarea unuia sau mai multor prelungitoare, $\mathrm{h}=60 \mathrm{~mm} /$ prelungitor).

Denumire parametru	Valoare	
Cod	DIATR1 -"D"-"d"; DIATR1C -"D"-"d"	DIATR2 -"D"-"d"; DIATR2C -"D"-"d"
apă vehiculată prin circuitele de răcire		

Cod: vezi tabel

Dispozitivele de dispersie a apei tip DTCT sunt destinate turnurilor de răcire a apei în curenţi transversali, cu tiraj natural sau forţat, prevăzute cu bazine de distribuţie a apei.

Alegerea tipului optim de dispozitiv de dispersie necesar, definit prin diametrul duzei, tipul de dispersor, prezenţa sau absenţa înăļătorului se face ţ̧inând seama de caracteristicile particulare ale fiecărei aplicaţii (poziţia dispozitivului pe suprafaţa irigată, sistemul de distribuție căruia îi este destinat dispozitivul - "de vară" sau "de iarnă" ş.a.).

Prin montarea unui înălţător, accesul apei în duză este admis numai când nivelul acesteia depăşeşte cota înălţătorului. În acest fel se poate asigura uniformitatea irigării turnului la debite de apă parţiale, sau protecţia la îngheţ a turnurilor în curenţi transversali.

Dispozitivele de dispersie a apei tip DTCT pot echipa şi unele sisteme de protecţie la îngheţ ale turnurilor de răcire în contracurent.

Montarea dispozitivelor DTCT se realizează prin simpla aşezare a acestora în găurile existente în planşeul bazinului de distribuţie.

Dispozitivul de dispersie a apeitip DTCT se compune din următoarele repere:

- pâlnie (cu diametrul la intrare de 90 mm sau 170 mm , după caz, pentru adaptarea dispozitivului la diametrul găurilor existente din planşeul bazinului de distribuție, respectiv la grosimea acestuia);
-ştuţ(duză);
- suport cu braţe;
- dispersor (tip plan cu zimţi, tip conic cu fante, tip "ciupercă" - utilizat în funcţie de condiţille specifice ale aplicaţiei).

Denumire parametru	Valoare
Cod	DTCT-P-"d"-170 DTCT-C-"d"-170 DTCT-P-"d"-90 DTCT-C-"d"-90
Fluid de lucru	apă vehiculată prin circuitele de răcire
Presiunea de lucru la duze	$0,2 \div 2$
Temperatura aerului (${ }^{\circ} \mathrm{C}$)	$-30 \div+50$
Temperatura apei (${ }^{\circ} \mathrm{C}$)	+ $5 \div+80$
Atmosfera	cu sau fără noxe industriale
Diametrul duzei la ieşire (mm)	21 42
Diametrul de intrare al pâlniei (mm)	170 sau 90

SEPARATOARE DE PICĂTURI

Separatoarele de picături sunt utilizate pentru reţinerea picăturilor de apă antrenate de fluxul de aer (picături care sunt generate prin împrăştierea apei în dispozitivele de dispersie) în turnuri de răcire în contracurent şi la turnuri în curenţi transversali, cu tiraj natural sau cu tiraj forţat.
Separatoarele de picături reţin de regulă picăturile mai mari de 50 microni. Picăturile de dimensiuni mici (sub 10 microni), provenite din condensarea vaporilor de apă (care constituie ceaţa din "panaşul" turnului) nu sunt reţinute de separatoarele de picături. Apa separată din fluxul de aer se returnează sub formă de picături mari în apa recirculată.
Prezenţa separatoarelor de picături în turnurile de rǎcire asigură:

- protecţia vecinătăţilor contra poluării chimice şi biologice (bacteriile şi sărurile rămân în circuit) şi contra apariţiei poleiului şi a chiciurei pe timp de iarnă; - reducerea pierderilor de apă şi a cheltuielilor pentru procurarea şi tratarea apei;
- în cazul turnurilor de răcire cu tiraj forţat se reduce rata erodării palelor ventilatoarelor, crescând durata de viaţă a acestora.

Sistem de separare a picăturilor - tip SS38

Cod: SS38

Profilul elementelor lamelare componente ale separatoarelor de picături tip SS38 se caracterizează prin eficienţă ridicată de reţinere (pierderile de apă remanente se situează sub $0,01 \%$ din debitul de apă ce intră în turn) şi un raport favorabil între rezistenţa aerodinamică şi eficienţa de reţinere.
Materialul elementelor componente (lamele, distanţiere) are stabilitate la UV şi la agresivitatea chimică a apei şi aerului.
La turnurile de răcire în contracurent, modulele separatoare de picături SS38 se montează pe grinzi, deasupra sistemului de distribuţie a apei sau, în unele cazuri, chiar pe ţevile de distribuţie a apei.
La turnurile de răcire în curenţi transversali, modulele separatoare de picături SS38 se pot poziţiona fie orizontal, fie vertical.

Separatoarele de picaturi SS38 sunt alcatuite din:

- elemente lamelare (plăci profilate) extrudate din PVC semirigid (material ignifug); - distanţiere (elemente de legătură) din PP normală sau ignifugată.

Elementele lamelare şi distanţierele formează, prin asamblare, module ce se montează deasupra sistemului de distribuţie a apei.
Modulele se vor sprijini direct pe grinzi, dacă deschiderea acestora nu depăşeşte 2,5 metri, iar pentru deschideri mai mari se vor sprijini pe grătare speciale. Separatoarele de picături se livrează pe componente, asamblarea făcându-se la locul de montaj.

Denumire parametru	Valoare
Fluid de lucru	aer cu sau fără noxe industriale
Temperatura maximă de lucru $\left({ }^{\circ} \mathrm{C}\right)$	55
Grosimea plăcii profilate (mm)	1,2
Distanţa medie dintre plăci, $\mathrm{h}(\mathrm{mm})$	38
Înăļ̧imea modulului, $\mathrm{H}(\mathrm{mm})$	155
Lungimea modulului, $\mathrm{L}(\mathrm{m})$	max. 6
Lăţimea modulului, $\mathrm{I}(\mathrm{mm})$	380
Greutate $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	8,7
Temperatura maximă de utilizare $\left({ }^{\circ} \mathrm{C}\right)$	55

SISTEME DE SUSŢINERE

Sistemele de susținere furnizate de Romind T\&G sunt realizate în mai multe variante constructive adaptate situaţillor specifice (configuraţia grinzilor) din turnurile de răcire.

Aceste sisteme conţin elemente metalice (din oţel galvanizat sau inox) şi / sau din PAFS şi asigură următoarele funcţi:

- susţinerea fiecărui tip de echipament funcţional la locul destinat acestuia în interiorul turnului;
- preluarea de sarcini suplimentare celor avute de echipamentul funcţional în cauză, aflat în stare de funcţiune (de exemplu sarcini provenite din colmatarea suprafeţelor componentei funcţionale respective);
- obturare minimă pe căile de trecere ale apei şi aerului prin turn;
-durabilitate mare.

Sisteme de susţinere a umpluturii de turn

Sistemul de susţinere al umpluturii este configurat astfel încât să asigure susţinerea modulelor de umplutură perpendicular pe lungimea modulului (pentru R27) sau în lungul modulului (pentru R80).

În cazul în care grătarele se poziţionează pe elementele constructive ale turnului, ele trebuie asigurate prin fixare. În cazul în care aceste grătare trebuie montate la alte cote de nivel faţă de cota grinzilor se utilizează agrafe de susţinere.

Grătarele sunt realizate din ţevi din PAFS, asamblate mecanic sau din tije din oţel inox. Agrafele sunt realizate prin fasonarea oţelului beton, protejate la exterior prin zincare termică.

Sistemul de susţinere pe care se aşează umplutura este de tip grătar şi are pasul între două elemente de susţinere consecutive, în funcţie de tipul umpluturii, astfel: - pentru R80, celmult 200 mm ;

- pentru R27, uzual 1000 mm (această dimensiune este şi funcţie de dimensiunea modulului).

Grătarele se vor asigura prin agăţare de (sau aşezare pe) elementele constructive
 ale turnului de răcire.

Sisteme de susținere a separatoarelor de picături

În cele mai multe din cazuri, pentru susținerea separatoarelor de picături în turnuri de răcire se folosesc ca elemente de suport grinzile de beton existente sau chiar țevile sistemului de distribuție a apei (atunci când dispozitivele de dispersie a apei sunt directionate în jos).

Există şi cazuri în care aceste soluții nu pot fi folosite şi atunci este necesară realizarea unei alte structuri de susținere a separatoarelor de picături și care poate fi sprijinită sau agățată de grinzile de beton şi care poate fi de următoarele tipuri: - rețea de bare (metalice sau PAFS), distanțate la maximum 2500 mm între ele; - grătare metalice sau din PAFS (soluție recomandată atât de greutatea redusă cât şi de comportamentul pe timp de iarnă).

Sisteme de susținere a țevilor de distribuție

Dacă poziționarea țevilor de distribuție față de elementele constructive ale turnului de răcire (grinzi) este sub acestea, atunci sistemul de susținere este format din colier + platbandă zincată (sau inox) sau sârmă de inox agățată de grindă.

Dacă poziționarea țevilor de distribuție față̌ de elementele constructive ale turnului de răcire (grinzi) este deasupra acestora, atunci sistemul de susținere este de tip "capră", format din țevi pultrudate de PAFS, asamblate mecanic.

Sistemul de distribuție este asigurat de sistemul de susținere, împotriva deplasărilor accidentale, prin intermediul unor bride (în cazul "caprelor") sau prin intermediul unor coliere.

TUNURI DE RĂCIRE

SISTEME DE PROTECTJIE ANTÎNGHET

Prin natura proceselor fizice ce au loc în interiorul acestora, turnurile de răcire sunt vulnerabile la îngheţ pe timp friguros. Formaţiunile de gheaţă pot produce avarierea echipamentelor funcționale şi constructive interioare ale turnului. De aceea aceste instalaţii se prevăd, de regulă, cu sisteme de protecţie de iarnă.

În cazul reabilitării turnului de răcire se stabilesc fie măsurile de îmbunătăţtre ale vechiului sistem de protecţie la îngheţ, fie înlocuirea acestuia cu un nou sistem de protecție la îngheţ.
Indiferent de tipul acestuia, sistemul de protecţie pe timp de iarnă trebuie să asigure un nivel de temperatură a apei, peste punctul ei de îngheţ, în orice loc al turnului, chiar în condiţii dificile de funcţionare ale acestuia (timp geros, sarcină termică scăzută, debit de apă sub cel nominal).
Se pot livra atât sisteme complete de protecţie pe timp de iarnă, de concepţie proprie, cât şi elemente componente pentru sistemele de protecţie de iarnă existente.

Sistem de protecţie pe timp de iarnă pentru turnuri în contracurent

Sistemul de protecție de iarnă pentru turnurile de răcire în contracurent (sistem brevetat) constă în montarea unui sistem suplimentar de distribuţie şi dispersie a apei, situat pe toată suprafaţa turnului, imediat sub umplutură, prin care se poate tranzita întregul debit de apă al turnului, ocolind în totalitate sistemul de distribuţie propriu-zis şi umplutura turnului.

Trecerea de la regimul de funcţionare fără protecţie la îngheţ (când tot debitul de apǎ al turnului trece prin sistemul de răcire propriu-zis), la un regim de lucru cu protecție la îngheţ se face prin devierea unei părţi, sau chiar a întregului debit de apă al turnului, către noul sistem de distribuţie, plasat imediat sub umplutura turnului.

Utilizând această soluţie se realizeazǎ o creştere a nivelului de temperaturǎ a apei în zona cea mai vulnerabilă la îngheţ a turnului, în condițiile în care răcirea de ansamblu a apei în turn este în limitele tehnologice necesare. Ca urmare se exclude practic apariţia de formaţiuni de gheaţă în turn şi totodată se poate face un reglaj al capacităţii de răcire a turnului şi un control stabil şi mult mai fin al nivelului de temperatură a apei.
De asemenea, pe perioada sezonului friguros, cât timp este în funcţiune sistemul de protecţie la îngheţ, se reduce consumul de energie al pompelor, prin micşorarea înălţimii geodezice de pompare.

Sistemul de protecție la îngheţ este alcătuit din: conducte de alimentare cu apă caldă; conducte de distribuţic; dispozitive de dispersie a apei; vane de izolare şi reglare; vane de golire şi conturnare.

Sistem de protecţie pe timp de iarnă pentru turnuri în curenţi transversali

Sistemul de protecţie la îngheţ pentru turnurile de răcire în curenţi transversali este alcătuit din dispozitive de dispersie a apei cu înălţător şi dispersoare adecvat profilate (de tip conice cu fante sau tip "ciupercă"), situate pe zona perimetrală a turnului, în exteriorul zonei prevăzute cu umplutură.

Duzele sistemului de protecţie la îngheţ intră în funcțiune numai pe timpul iernii, prin creşterea nivelului apei în bazinul distribuitor al apei, realizând suplimentar o ploaie de apă caldă în zona perimetrală, exterioară umpluturii, zona cea mai vulnerabilă la îngheţ a turnului.

Sistemul de protecţie la îngheţ la turnurile de răcire în curenţi transversali este alcătuit din dispozitive de dispersie prevăzute cu duze de diverse diametre, cu dispersoare de tip conic cu fante sau tip "ciupercă" şi cu pâlnii pentru fixare în bazinul de distribuţie a apei; înăļ̧ătoare pentru reglarea cotei de acces al apei în duză.

SERVICII

Consultanţă şi inginerie tehnologică

ROMIND T\&G efectuează servicii de consultanţă şi inginerie tehnologică (proiectare tehnologică) în domeniile turnurilor de răcire şi instalaţiilor de curăţare /filtrare a apelor industriale şi potabile, pentru implementarea celor mai indicate echipamente şi modalităţi de lucru, în situaţia concretă a clientului.

Măsurători de performanţă funcţională la turnurile de răcire

ROMIND T\&G efectuează probe de performanţă funcțională la turnuri de răcire de orice tip şi orice capacitate, cu punerea în evidenţă a capacităţii reale de răcire a acestora (înainte şi după repararea / modernizarea echipamentelor lor funcționale).

Studii de soluţii tehnico-economice

ROMIND T\&G efectuează studii de soluţie pentru extinderea capacităţii de răcire, prin introducerea unor noi unităţi sau pentru perfecţionarea funcţională a turnurilor şi circuitelor de răcire existente.

Listă de referinţe (extras) pentru aplicaţii în domeniul turnurilor de răcire mari

Beneficiar final	An	Caracteristici turn	Componente şi servicii furnizate
OTEELINOX Târgovişte	2012	TRTF ($3 \times 400 \mathrm{mc} / \mathrm{h}$)	Proiectare tehnologică şi probe performanţă Furnizare sistem complet de răcire (R80 + SS38 + DIATR) + ventilatoare
CET DROBETA Turnu Severin	2012	TRTN 3 (10.000 mc/h)	Furnizare sistem complet de răcire (R80 + SS38 + DIATR) + sistem de protectie pe timp de iarnă
ARCELOR MITTAL Galați	$\begin{aligned} & 2011- \\ & 2012 \end{aligned}$	TRTN 2 Suflante 1 ($5.000 \mathrm{mc} / \mathrm{h}$)	Proiectare tehnologică şi probe performanţă Furnizare sistem complet de răcire $($ R80 + SS38 + DIATR) + sistem de protecţie pe timp de iarnă
ARCELOR MITTAL Galaţi	$\begin{aligned} & 2010- \\ & 2011 \end{aligned}$	TRTN 3 Suflante 2 (10.000 mc/h)	Proiectare tehnologică şi probe performanţă Furnizare sistem complet de răcire (R80 + SS38 + DIATR)
DONAU CHEM Turnu Măgurele	2011	TRTN ($4.500 \mathrm{mc} / \mathrm{h}$)	Furnizare sistem de distribuție a apei DIATR şi SS38
ARCELOR MITTAL Galaţi	2010	TRTN GA Furnale ($10.000 \mathrm{mc} / \mathrm{h}$)	Consultanţă şi proiectare tehnologică
ALUM Tulcea	2010	TRTN 3 (3.000 mc/h)	Proiectare tehnologică și probe performanţă Furnizare sistem complet de răcire (R80 + SS38 + DIATR)
DONAU CHEM Turnu Măgurele	2009	TRTF ($4.500 \mathrm{mc} / \mathrm{h}$)	Furnizare sistem de distribuţie a apei şi separatori de păcături SS38
COMPLEXUL ENERGETIC Rovinari	2009	TRCT 5 ($42.000 \mathrm{mc} / \mathrm{h}$)	Măsurători de performanţă funcţională
US GOVORA CIECH CHEMICAL GROUP	2008	TR 3 ($4.500 \mathrm{mc} / \mathrm{h}$)	Consultanţă şi proiectare tehnologică

\(\left.\left.\left.$$
\begin{array}{llll}\hline \text { Beneficiar final } & \text { An } & \text { Caracteristici turn } & \begin{array}{c}\text { Componente şi servicii } \\
\text { furnizate }\end{array} \\
\hline \begin{array}{l}\text { US GOVORA } \\
\text { CIECH CHEMICAL GROUP }\end{array} & 2007 & - & \begin{array}{c}\text { Studiu tehnico-economic privind } \\
\text { alimentarea cu apă industrială }\end{array} \\
\hline \text { SE Mureş } & 2008 & \text { TRTN } 1(10.000 \mathrm{mc} / \mathrm{h}) & \text { Furnizare sistem de distribuţie a apei }\end{array}
$$\right] $$
\begin{array}{c}\text { Furnizare sistem complet de răcire } \\
\text { (R80 + DIATR) }\end{array}
$$\right] \begin{array}{c}Furnizare sistem complet de răcire

(R80 + SS38 + DIATR)\end{array}\right]\)| TRTN $2(10.000 \mathrm{mc} / \mathrm{h})$ |
| :---: |

Legenda: TR - turn de răcire; TRTN - turn de răcire cu tiraj natural; TRTF - turn de răcire cu tiraj forţat
TRCC - turn de răcire în contracurent; TRCT - turn de răcire în curenţi transversali

ROMIND tec
 Solutii si Tehnologii Moderne

Bd. Biruintei Nr. 162 (DN3, Km 15)
PANTELIMON, Jud. Ilfov, ROMANIA
Tel.: 021.352.87.41 (42)/ Fax: 021.352.87.44

